
Application Note

Interfacing to C# in Visual Studio 13

Covers: Interfacing DataRay Camera and Slit Scan Profilers to C# in Visual Studio 2013 using the
DataRay OCX.

Start in the standard software:
• As Administrator, install the DataRay software which came with your product.

• Attach the profiler product. Allow the drivers to install.

• Open the DataRay software and select your profiler in the Device pull-down menu.

• Learn to use your product in the DataRay software. Then close the software.

Visual Studio 13:
We do not claim to be Visual Studio ‘experts’, however we are able to create new projects in Visual
Studio that can control DataRay products. Install Visual Studio 2013 on your computer (earlier
versions should work, but exact details will change).Download an example below:

• Cameras: Cameras

• BeamMap2: BeamMap2

• Beam’R2: BeamR2

Build and run example:
When building you will need to change the target from AnyCPU to x86 or x64 based off what version
of the OCX you have installed. For 32 bit set the target to x86 for 64 bit set it to x64. When
doing that the example should now build and run with no errors (Fig. 1). Not working? Email
support@dataray.com with:

• Device name and serial number

• DataRay, Windows and Visual Studio versions which you are using. Only Visual Studio 2013
and later are fully supported. The DataRay OCX still works in VS2006, VS2008, and VS2010,
but we are only able to provide limited support.

Overview of OCX:
Your interfacing code communicates with DataRay products through the DataRay OCX. The OCX
is an ActiveX component that can be accessed from a variety of Windows based environments. The
OCX is automatically generated and registered with the Windows operating system upon installing
the DataRay software. Once initialized, the OCX is always running. This means that the camera is
still running, even while editing GUI elements in Visual Studio. Do not be alarmed if DataRay OCX
GUI elements are active while your program is not running. This is the expected behavior. Some
important notes:

• Read through this entire document.

• Some prior experience with C#, Windows Form programming, and Visual Studio is required.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

1

https://dataray-web.s3.amazonaws.com/sw/if/dataray-csharp-camera-example-2021.zip
https://dataray-web.s3.amazonaws.com/sw/if/dataray-csharp-beammap2-example-2021.zip
https://dataray-web.s3.amazonaws.com/sw/if/dataray-csharp-beamr-example-2021.zip
support@dataray.com
http://www.dataray.com/


Application Note

• The OCX is only functional as part of a GUI-based program.

• In the Design View of VS2013, elements may appear as white boxes or as the actual GUI element
they represent.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

2

http://www.dataray.com/


Application Note

Figure 1: Example application built and running.

Tutorial:
We will show you step-by-step how the example program was created. Follow the instructions included
in the series of figures listed below.

Figure 2: First, create a new Windows Form .

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

3

http://www.dataray.com/


Application Note

Figure 3: The empty project should look like this.

Figure 4: Open the Toolbox. You should see the following DataRay components. If these compo-
nents aren’t visible, complete the following steps:

1. Select Tools − > Choose Toolbox Items

2. Select COM Components tab

3. Select Browse…

4. Navigate to the your DataRay install directory

5. Select DataRayOcx.ocx

6. Your toolbox should now be populated with DataRay Controls.

After this check the properties of your designer. Set AutoScaleMode to None.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

4

http://www.dataray.com/


Application Note

Figure 5: Now we can begin building the actual program. First select a GetData Control (not
DataRayGetData Control) and create one on the dialog box. This is the only OCX control class
required for interfacing to DataRay cameras.

Figure 6: We will also create a Ready button and a display for the two-dimensional camera display
(known as a CCDImage) Select and create a Button Control on the dialog box. Click on the top
right arrow button. Select ActiveX-Properties. Change the ButtonID to 297.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

5

http://www.dataray.com/


Application Note

Figure 7: Now create one CCDimage Control. This object will be used to view the image produced
by the CCD, so make the object as big as you would like. This completes the basic layout of the
dialog box.

Figure 8: By default when you add the GetData Control it will create a memeber called axGetData1.
This object contains the method StartDriver() that needs to be called to initialize the camera. You
can change the name of this variable by highlighting the GetData Control editing the properties and
changing the name.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

6

http://www.dataray.com/


Application Note

Figure 9: Add the following line: this.axGetData1.StartDriver(); then to your public Form1
constructor in Form1.cs. Finally we want to start the device using the following command.
this.axGetData1.StartDevice();

Figure 10: Now you are ready to build the project. Build and run your project. The green button is
exactly the same Ready button as in the DataRay software. Click on the button to begin running
your camera. You should see something similar to this, depending on your laser source. Congratula-
tions, you are now interfacing with your DataRay device.

Figure 11: Now, we will add a few more objects. For this example, we want to display the X-axis
profile, Y-axis profile, and the calculated centroid positions (Xc and Yc). Add two Profile Controls
and two Button Controls.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

7

http://www.dataray.com/


Application Note

Figure 12: In order to find the correct ButtonID to use for each object in your custom interface,
you need to:

1. Close VS2013 and open the DataRay software

2. Right click on any button, to see the dialog

3. Note the current Name and ID# for this result at the top of the dialog

4. Repeat for all the results of interest

5. Close the DataRay Software

Following these instructions, you will be able to tell that to see Xc and Yc, we should change the
ButtonIDs to 171 and 172. For the profiles, change the ProfileIDs to 22 and 23.
A complete list of Button IDs:
Buttons
A complete list of Profile IDs:
Profiles

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

8

https://dataray-web.s3.amazonaws.com/pdf/dataray-index-to-test-parameters-enum.pdf
https://dataray-web.s3.amazonaws.com/pdf/dataray-profiles-enum.pdf
http://www.dataray.com/


Application Note

Figure 13: Build and run your program and you should have a custom interface featuring Xc button,
Yc button, Xc profile and Yc profile. This completes the basic tutorial! Problems/Questions?
Contact us with the information listed on the first page of this document. Continue reading for
additional tutorials regarding programmatically extracting data from the OCX and event handling.

Programmatically Extracting Data from the OCX:
There are two main methods for extracting data from the OCX in your program. One way is to create
an instance of the control class (same steps as earlier for the GetData Control). For example, you
could create a variable called MyXcButton for the Button with ID 171. Then, the following line
of code will give you the value from the button:

double XMyXcButton.GetParameter();

You can also query the GetData Control directly for parameters:

double Xc_FromOCXResult=axGetData1.GetOcxResult(171);

where the argument for the GetOcxResult method is the same number used to ID the button.
The OCX also supports sending arrays of data via variants:

object image;
short[] array;
image=MyXProfile.GetProfileDataAsVariant() as short[];
array = axGetData1.GetProfileDataAsVariant as short[];

This is the preferred method for reading large amounts of data from the OCX. In this section of
tutorial, we will create a button that will, when clicked read and retrieve the 2D image data via
a a variant and store the information as an array of pixel data in a .csv file. The image data
is obtained from the OCX through invocation of the GetWinCamDataAsVariant() function of the
GetData ActiveX control (see Fig.15 for sample code).

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

9

http://www.dataray.com/


Application Note

Figure 14: Using the toolbox, add an object that users can click by dragging a Button from the
Dialog Editor section (not a Button Control from the Primitives section). Right click on the button
and choose Properties. Change the caption to Retrieve Image Data. Next, change the name of the
button to ImageButton. Next, click on the lightning bolt top right of the properties window. This
is the event handlers section. We want to create an on click handler so we can type in our function
name and then hitting enter and clicking on it again will take you to the generated function.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

10

http://www.dataray.com/


Application Note

Figure 15: Within this function’s definition, you will write your code that retrieves the 2D image
data from the DataRay OCX and save the data as a .csv file. This sample code saves data retrieved
from FillVariantWithWinCamData() in a file called ImageData.csv, which is created in the exe-
cutable path folder when the button is clicked. Since we used StreamWriter you will need to include
using system.IO; at the top of the page. Code references can be found at the end of the tutorial is
the image is difficult to read.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

11

http://www.dataray.com/


Application Note

Event Handling:
Utilize event handling if you would like to produce code that will be executed only when a specified
event occurs.

Figure 16: To begin event handling for GetData Control events, click the GetData Control object, go
to its properties and click on the Event Handler lightning bolt. Choose DataReady. The function
handler name will be set to axGetData1_DataReady. Put whatever code you want to occur on a
DataReady Event there.

Figure 17: Locate the axGetDAta1_DataReady(object sender, EventArgs e) function in Form1.cs.
This function will be trigger each time a GetData Control event occurs. Write your event handling
code here.

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

12

http://www.dataray.com/


Application Note

Interfacing with Scanning Slit Beam Profilers
You can interface with the Scanning Slit Beam Profilers almost in exactly the same way with a few
key differences.

• Button Id’s may be specific to the type of device you are using. You can open the software and
right click on the buttons to see what would be compatible with your product.

• Profile Id’s similarly may be different. Check out the profile Id reference page to see what may
apply to your product. Profiles. You can also look at our example code to see what Profile Id’s
we used.

• On the WincamD we used a CCD Image. This will not work with the Scanning Slit Beam
Profilers. Instead we use a 2D Control. We can use it the same way we used the CCD Image.

Reference Code
private void ImageDataBn_Click(object sender, EventArgs e)

{
short[] image;
short[] array;
image = axGetData1.GetWinCamDataAsVariant() as short[];
array = axGetData1.GetWinCamDataAsVariant() as short[];
long resolution = axGetData1.CaptureIsFullResolution();
short horizontalPixels = axGetData1.GetHorizontalPixels();
short verticalPixels = axGetData1.GetVerticalPixels();
long pixelCount;
//resolution of 0 indicates it is a fast resolution capture
if (resolution == 0)
{

pixelCount = (horizontalPixels * verticalPixels)/4;
}
//Full Resolution
else if(resolution==1){

pixelCount = (horizontalPixels * verticalPixels);
}
else
{

pixelCount = (horizontalPixels * verticalPixels) / 8;
}
string exeFolder = System.IO.Path.GetDirectoryName(Application.ExecutablePath);
string pathname = exeFolder + "\\ImageData.csv";
StreamWriter sw = new StreamWriter(pathname);
for(int i = 1; i<=array.Length;i++)
{

int W = image[i - 1];
string Name;
if (i == 1)
{

Name = W + ", ";
sw.Write(Name);

}
else if (i % (horizontalPixels) == 0)
{

sw.Write(W+Environment.NewLine);
}
else
{

Name = W + ", ";
sw.Write(Name);

}
}
sw.Close();

}

1675 Market Street, Redding, CA 96001 USA
dataray.com | Tel +1 530 395-2500

13

https://dataray-web.s3.amazonaws.com/pdf/dataray-profiles-enum.pdf
http://www.dataray.com/

	Start in the standard software:
	Visual Studio 13:
	Build and run example:
	Overview of OCX:
	Tutorial:
	Programmatically Extracting Data from the OCX:
	Event Handling:
	Interfacing with Scanning Slit Beam Profilers
	Reference Code

