
Application Note

Interfacing to C++ in Visual Studios 2013

Covers: Interfacing DataRay Camera and Slit Scan Profilers to C++ in Visual Studios 2013 using
the DataRay OCX.

Start in the standard software:

• As Administrator, install the DataRay software which came with your product.

• Attach the profiler product. Allow the drivers to install.

• Open the DataRay software and select your profiler in the Device pull-down menu.

• Learn to use your product in the DataRay software. Then close the software.

Add Visual Studio 13:

We do not claim to be Visual Studio experts, however we are able to create new projects in Visual
Studio that can control DataRay products. Install Visual Studio 2013 on your computer (earlier
versions should work, but exact details will change). Download the example from the DataRay
website:

• Cameras: Download and unzip: TestingDataRayInterfaceToCPlusPlusVS2013.zip

• BeamMap2, BeamR2, ColliMate: TBA

Build and run example:

The example should build and run with no errors (see Fig. 1). Not working? Email support@dataray.com
or call 866-946-2263 x2002 with:

• Device name and serial number

• DataRay, Windows and Visual Studio versions which you are using. Only Visual Studio 2013
and later are fully supported. The DataRay OCX still works in VS2006, VS2008, and VS2010,
but we are only able to provide limited support.

Overview of OCX:

Your interfacing code communicates with DataRay products through the DataRay OCX. The OCX
is an ActiveX component that can be accessed from a variety of Windows based environments. The
OCX is automatically generated and registered with the Windows operating system upon installing
the DataRay software. Once initialized, the OCX is always running. This means that the camera is
still running, even while editing GUI elements in Visual Studio. Do not be alarmed if DataRay OCX
GUI elements are active while your program is not running. This is the expected behavior. Some
important notes:

• Read through this entire document.

• Some prior experience with C++, Windows MFC programming, and Visual Studio is required.

• The OCX is only functional as part of a GUI-based program.

• In the Resource View of VS2013, elements may appear as white boxes or as the actual GUI
element they represent.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

1

http://www.dataray.com/assets/software/TestingDataRayInterfaceToCPlusPlusVS2013.zip
support@dataray.com
http://www.dataray.com/


Application Note

Figure 1: Example application built and running.

Tutorial:

We will show you step-by-step how the example program was created. Follow the instructions included
in the series of figures listed below.

Figure 2: First, create a new MFC Application in VS2013.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

2

http://www.dataray.com/


Application Note

Figure 3: Select Dialog based to simplify things. This is not actually a requirement, but will allow
the example to be simple.

Figure 4: The default values in VS2013 are sufficient for this project. Under the Advanced Features
tab, verify that ActiveX controls are enabled.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

3

http://www.dataray.com/


Application Note

Figure 5: The empty project should look like this.

Figure 6: Open the Toolbox. You should see the DataRay components that are displayed above. If
these components aren’t visible, complete the following steps:

1. Select Tools − > Choose Toolbox Items

2. Select COM Components tab

3. Select Browse

4. Navigate to the your DataRay install directory

5. Select DataRayOcx.ocx

6. Your toolbox should now be populated with DataRay Controls.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

4

http://www.dataray.com/


Application Note

Figure 7: Now we can begin building the actual program. First drag a GetData Control (not
DataRayGetData Control) onto the dialog box. This is the only OCX control class required for
interfacing to DataRay cameras.

Figure 8: We will also create a Ready button and a display for the two-dimensional camera display
(known as a CCDImage) Drag a Button Control to the dialog box. Right click on the button.
Select Edit Control and then exit the Edit Control window. Right click on the button again. This
time, select Properties. Change the ButtonID to 297.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

5

http://www.dataray.com/


Application Note

Figure 9: Now drag one CCDimage Control from the toolbox to the dialog box. This object will
be used to view the image produced by the hardware, and its height must be 50 pixels greater than its
width. Finally, drag one PaletteBar Control from the toolbox to the dialog box. This completes
the basic layout of the dialog box.

Figure 10: Now we need to add some code to the template. Right-click on the GetData Control
and select Add Variable. Name the variable MyGetDataCtrl and make sure Control variable
is checked. This creates a member control object in your dialog class named MyGetDataCtrl. The
files getdatactrl1.h and getdatactrl1.cpp are automatically generated and do not need to be modified.
This object contains the method StartDriver() that needs to be called to initialize the camera.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

6

http://www.dataray.com/


Application Note

Figure 11: Add the following line: MyGetDataCtrl.StartDriver(); to your initialize dialog function

BOOL CTestingDataRayInterfaceToCPlusPlusVS2013Dlg::OnInitDialog() .

Figure 12: Now you are ready to build the project. Build and run your project. The green but-
ton is exactly the same Ready button as in the DataRay software. Click on the button to begin
running your camera. You should see something similar to this, depending on your laser source.
Congratulations, you are now interfacing with your DataRay device!

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

7

http://www.dataray.com/


Application Note

Figure 13: Now, we will add a few more objects. For this example, we want to display the X-axis
profile, Y-axis profile, and the calculated centroid positions (Xc and Yc). Add two Profile Controls
and two Button Controls.

Figure 14: In order to find the correct ButtonID to use for each object in your custom interface,
you need to:

1. Close VS2013 and open the DataRay software

2. Right click on any button, to see the dialog

3. Note the current Name and ID# for this result at the top of the dialog

4. Repeat for all the results of interest

5. Close the DataRay Software

Following these instructions, you will be able to tell that to see Xc and Yc, we should change the
ButtonIDs to 171 and 172. For the profiles, change the ProfileIDs to 22 and 23.
A complete list of Button IDs:
http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf
A complete list of Profile IDs:
http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

8

http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf
http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf
http://www.dataray.com/


Application Note

Figure 15: Build and run your program and you should see your custom interface featuring the
Xc button, Yc button, Xc profile and Yc profile. This completes the basic tutorial! Prob-
lems/Questions? Contact us with the information listed on the first page of this document. Con-
tinue reading for additional tutorials regarding event handling and programmatically extracting data
from the OCX.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

9

http://www.dataray.com/


Application Note

Event Handling:

Consider utilizing event handling if you would like to include code in your project that will be executed
only when a specified event occurs. In this tutorial, we will be handling GetData Control DataReady
events. This is an effective way to log data on a per frame basis, because the DataReady event is
called every time a new frame is available for processing. Our example code contains a function that
gets called every time a DataReady event is received. You can insert whatever code you want into
this function and it will be executed once per new image.

Figure 16: To begin event handling for GetData Control events, right click the GetData Control
object in the dialog box and select Add Event Handler. Choose DataReady from the “Message
type:” menu. The function handler name will be set to DataReadyGetdatactrl1.

Figure 17: Locate the function called DataReadyGetdatactrl1() in TestingDataRayInterfacetoCPlus-
PlusVS2013Dlg.cpp. This function will be triggered each time a GetData Control event occurs. Write
your event handling code here, within the function’s definition. This completes the event handling
tutorial.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

10

http://www.dataray.com/


Application Note

Programmatically Extracting Data from the OCX:

There are two main methods for extracting data from the OCX in your program. One method is to
create an instance of the control class (same steps as earlier for the GetData Control (see Fig. 10)).
For example, you could create a variable called MyXcButton for the Button with ID 171. Then,
the following line of code will give you the value from the button:

double Xc=MyXcButton.GetParameter();

You can also query the GetData Control directly for parameters:

double Xc FromOCXResult=MyGetDataCtrl.GetOcxResult(171);

where the argument for the GetOcxResult method is the same number used to ID the button.

The OCX also supports sending large amounts of data via variants:

VARIANT MyXVar=MyXProfile.GetProfileDataAsVariant();

This is the preferred method for reading large amounts of data from the OCX. In this section of tuto-
rial, we will create a button that will, when clicked, read and retrieve the 2D image data via a variant
and store the information as an array of pixel data in a .csv file. The image data is obtained from
the OCX through invocation of the GetWinCamDataAsVariant() function of the GetData ActiveX
control (see Fig. 19 for sample code).

Figure 18: Using the toolbox, add an object that users can click by dragging a Button from the
Dialog Editor section (not a Button Control from the Primitives section). Right click on the button
and choose Properties. Change the caption to Retrieve Image Data. Next, right click on the button
and choose Add Event Handler. Make sure the “Message type” is set to BN CLICKED and set
the Function handler name to OnBnClickedRetrieveImageData.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

11

http://www.dataray.com/


Application Note

Figure 19: Adding the event handler to the Retrieve Image Data button will automatically cre-
ate a function called OnBnClickedRetrieveImageData() in the TestingDataRayInterfacetoCPlus-
PlusVS2013.cpp source file. Within this function’s definition, you will write your code that retrieves
the 2D image data from the DataRay OCX and save the data as a .csv file. This sample code saves
data retrieved from GetWinCamDataAsVariant() in a filed called ImageData.csv, which is created
in the TestingDataRayInterfacetoCPlusPlusVS2013 folder when the button is clicked. If you plan on
using the CComSafeArray to handle the variant data, be sure to include the atlsafe.h library in the
header file. This completes the tutorial. Problems/Questions? Contact us with the information
listed on the first page of this document.

1675 Market Street, Redding, CA 96001 USA
dataray.com — Tel +1 530 776 0843 — eFax +1 530 255 9062

12

http://www.dataray.com/

	Start in the standard software:
	Add Visual Studio 13:
	Build and run example:
	Overview of OCX:
	Tutorial:
	Event Handling:
	Programmatically Extracting Data from the OCX:

