

Interfacing to LabVIEW
OVERVIEW:

• Getting Started

o Interfacing with OCX

o Installation

• Basic Tutorial

o DataRay OCX Software

o Creating a VI

o Adding a Beam Image

o Extending the Program

• Advanced Tutorial

o WinCamD Camera

o WinCamD Button

o WinCamD Event

o BeamMap

GETTING STARTED:

INTERFACING WITH OCX

Your interfacing LabVIEW VI communicates with DataRay products through the DataRay OCX. The OCX has ActiveX controls

that can be accessed from a variety of Windows based environments. The OCX is automatically generated and registered

with the Windows operating system upon installing the DataRay software. ActiveX controls (figures, buttons, graphics etc.)

from the DataRay standalone application can be added to the LabVIEW front panel. These ActiveX controls can be

controlled on the LabVIEW front panel as in the DataRay standalone application (clicking on the panels during run mode).

Additionally, the objects can be controlled using invoke and property nodes found in the LabVIEW software.

This tutorial will consist of a basic section on adding ActiveX controls to the front panel and an advanced section on

acquiring data from the OCX. Once initialized in a VI, the ActiveX controls are always running, even while editing the VI.

Therefore, the OCX’s GUI elements (including figures) will still be active while the VI is in editing mode since the camera is

still on.

SOME IMPORTANT NOTES:

• Since the OCX is 32-bit, you will need 32-bit LabVIEW and libraries

• The OCX and DataRay program cannot be used at the same time

INSTALLATION:

First we need to install the DataRay Software:

• As Administrator, install the DataRay software which came with your product.

• Attach the profiler product. Allow the drivers to install.

• Open the DataRay software and select your profiler in the Device pull-down menu.

• Learn to use your product in the DataRay software. Then close the software.

Second we need to install the associated LabVIEW software:

• Install a 32-bit version of LabVIEW.

Current support runs from LabVIEW 8.5 to LabVIEW 2015. You can download the interface

developed in this tutorial. It exists as a collection of 5 LabVIEW files:

• WinCamD Camera Example: Download & unzip.

• WinCamD Button Example: Download & unzip.

• WinCamD Event Example: Download & unzip.

• BeamMap Example: Download & unzip.

• WinCamD Multicamera Example: Download & unzip.

Note: All the settings from the last DataRay.exe software session are recalled and used unless expressly
changed in LabVIEW.

This example should build and run with no errors. Not working? Email support@dataray.com or call (530) 395-
2500 with:

• Device name and serial number

• DataRay and Windows versions which you are using.

https://dataray-web.s3.amazonaws.com/sw/if/dataray-labview-wincamd-camera.zip
https://dataray-web.s3.amazonaws.com/sw/if/dataray-labview-wincamd-button.zip
https://dataray-web.s3.amazonaws.com/sw/if/dataray-labview-wincamd-event.zip
https://dataray-web.s3.amazonaws.com/sw/if/dataray-labview-beammap2.zip
https://dataray-web.s3.amazonaws.com/sw/if/dataray-labview-wincamd-multicamera.zip
mailto:support@dataray.com

BASIC TUTORIAL:

We will show you step-by-step how the example VIs were created in LabVIEW for the

examples below.

ADDING DATARAY OCX ELEMENTS
To add a DataRay OCX GUI element first create an ActiveX Container on the front panel

(found in the .NET & ActiveX menu, see Figure 1). Once the container has been created

right click the container and select Insert ActiveX Object from the menu (see Figure 2).

A dialog box will appear with a drop down menu and a list of all ActiveX objects in

Windows (see Figure 3). Select Create Control from the drop down menu and then the

desired DataRay ActiveX Object from the list provided. The available DataRay OCX classes

and their associated functions (which can be accessed using invoke or property nodes)

can be found in the documentation. For buttons and profiles, an ID property of the object

must be set to determine what values they will represent. To change a property of

an object, right click the object and select object name>properties (e.g. Button-

>Properties or Profiles->Properties, see Figure 4). A dialog box will appear with a

list of properties pertaining to that class (see Figure 5). Select a number from the

list to assign it to the object. Some objects, such as CCDimage Control

 and PaletteBar Control, have only one option and thus no list will appear.

Figure 3

Figure 1

Figure 2

Figure 4

Figure 5

http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

CREATING A VI
The GetData Control class and a few of its methods are absolutely necessary

for an interface to the DataRayOCX. This class controls the DataRay device

and is used to acquire data. To begin a VI, insert the GetData Control class

into an ActiveX Container. Next, connect a succession of three invoke nodes

to the GetData Control element (see Figure 6). In the first invoke node select

StopDevice from the methods listed. This will stop any processes previously

running on the device. Select StartDriver on the second invoke node from

the methods listed. This will initialize the driver if not already running or

restart the device driver. From the third invoke node select StartDevice. This

will start the device’s functionality. These three nodes in conjunction with Figure 6

the GetData Control object are essential to any VI running DataRay

software. To add further control or acquire data, a combination of invoke

Note: If you have downloaded the example VIs, they may fail to compile due to a different
GetData Control object in your DataRay software. Delete the GetData Control object,

manually recreate it and then rewire it to the invoke nodes. Manually reselect the

appropriate methods from the invoke nodes.

ADDING BEAM IMAGE
A variety of beam images can be displayed on the LabVIEW VI front panel.

However, the type of 2-D image that can be displayed is dependent on the type of

beam profiler used, either camera profiler or scanning slit profiler. Due to the

communication between OCX elements and LabVIEW, the VI must be saved and

then restarted before an image can be displayed on the image objects.

2D IMAGE

• A direct image of the beam can be displayed when using a DataRay Camera

Profiler. To display the image of the beam, both the CCDimage Control and

PaletteBar Control ActiveX objects must be placed on the front panel.

Initially, the CCDimage Control object on the front panel will be small, but

you can select the object and drag to increase its size. If the PaletteBar

Control object is not placed on the front panel, the CCDimage Control

element will remain dark and without color. The CCDimage Control

object is only compatible with DataRay cameras and not scanning slit

profilers.

• When using a scanning slit profiler, the wander display (yellow-green, see

Figure 8) can be displayed. The wander display shows the position of the

beam relative to the calibrated (0,0) position. To display this image, insert a

Button Control object onto the front panel. Right click the button and select

Button->Properties. From the list of available button controls select 197.

Select the display and enlarge. The wander display is only compatible

with DataRay scanning slit profilers, not cameras.

Figure 7: Images available for a camera profiler.

Figure 8: Images available for a scanning slit profiler.

Figure 7: Images available for a camera profiler.

• The 2-D intensity image can be displayed for scanning slit profilers as well. To insert this image, add the TwoD

Control object onto the front panel. Select the display and enlarge. The PaletteBar Control object must be

included in the VI for the image to be seen. The 2-D intensity image does not contain actual 2-D data. The 2D

image is an artificial reconstruction which assumes the same X profile for all values of Y and the same Y profile

for all values of X. The 2-D intensity display is only compatible with DataRay scanning slit profilers, not cameras.

3D IMAGE

• To display a 3D image of the beam. Insert the ThreeDview Control object onto the front panel. Select the box and

enlarge. The PaletteBar Control object must be included in the VI for the image to be seen. This object can be used

both for cameras, and slit profilers. However, when used with the scanning slit profiler, the 3-D is an artificial

reconstruction which assumes the same X profile for all values of Y and the same Y profile for all values of X.

EXTENDING THE PROGRAM

Besides the names of the ActiveX controls, you will need to know the ID’s for specific

button and profiles. In order to find the correct Button ID# to use for the buttons,

you need to:

1) Close your GUI and open the DataRay software.

2) Right click on any button, to see the dialog on the right.

3) Note the current Name and ID# for this result at the top of the dialog.

4) Repeat for all the results of interest. Close the DataRay Software.

There are complete lists of ID’s for profiles and buttons available in interface
section of the DataRay website:

Profiles

Buttons

Finally, there is documentation describing the methods and properties of all the ActiveX controls:

 Documentation

ADDING A BEAM PROFILE

To display the profile of the beam, the Profiles Control ActiveX object must be placed

on the front panel. After the object has been placed, right click the object and select

Profiles->Properties from the menu. A dialog box will appear with a list of the profiles

available. The profile number can be found via the instructions in the Extending the

GUI section. The profile object will initially be small, but by selecting the object and

increasing the size, the image and information can be seen.

ADDING BUTTONS

The remaining elements in the LabVIEW examples provided are all of the Button

Control class. To create a button panel, insert a Button Control ActiveX object on the

front panel. After the object has been placed, right click the object and select Profiles-

>Properties from the menu. A dialog box will appear with a list of the profiles available.

The button number can be found via the instructions in the Extending the GUI

section.
Figure 10: Button and Profile

Figure 9

https://dataray-web.s3.amazonaws.com/pdf/dataray-profiles-enum.pdf
https://dataray-web.s3.amazonaws.com/pdf/dataray-index-to-test-parameters-enum.pdf
http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

ADVANCED TUTORIAL: ACQUIRING DATA
To acquire data from the device LabVIEW elements will be used in conjunction with ActiveX controls. The DataRay device

can be controlled using invoke and property nodes via the GetData Control object. Additionally, data can be acquired

with the GetData Control class. Two camera examples are included, one which records the camera pixel data and the

other which records button data. Additionally, an example recording profile data and opening both M^2 and divergence

dialog boxes with the BeamMap is included. The instructions and screenshots included provide instructions for creating

a simple VI with the same principles as the VIs that can be downloaded. With previous LabVIEW experience, the more

complex, downloadable examples should be easily understood.

EXAMPLE VI: WINCAMD CAMERA
To return the pixel data from the camera, attach an invoke

node to the GetData Control object and select

GetWinCamDataAsVariant from the methods listed. This

will provide the camera pixel data in a variant data format.

To convert the data, use the Variant to Data Function

from the Variant Functions palette. Use a constant array

of U16 as the type input on the Variant to Data Function.

Using double or other signed variables for the input type

will induce errors in the sign values produced because the

data is unsigned. The pixel data is returned from the

Variant to Data Function as a 1D U16 array. The 1D array

consists of horizontal pixel rows concatenated together, so

it will need to be converted to a 2D array matching the pixel

layout of the camera to be useful. To begin, the horizontal

and vertical pixel counts must be found. Attach three

invoke nodes to the GetWinCamDataAsVariant

successively. For the first invoke node, select

GetHorizontalPixels from the methods available. For the

second invoke node select GetVerticalPixels and for the

third invoke node select CaptureIsFullResolution.

GetHorizontalPixels and GetVerticalPixels return the

horizontal and vertical pixel counts of the capture block

respectively; they do not directly correspond to the number

of data points collected. To know how many data points are

collected, you need to know if the camera is operating in

Fast or Full mode. CaptureIsFullResolution returns a -1 if the device

is in Full mode, and a 0 if the device is in Fast mode. In Fast mode,

every other pixel along each axis is recorded and so both pixel counts must be divided by two to

match the recorded data points. Finally, a for loop takes the data array and parses it using the

corrected pixel counts and Array Subset Function. Since the 1D array consists of horizontal pixel

rows concatenated together, the length of the array subset is equal to the corrected horizontal pixel

count, while the number of iterations of the for loop is equal to the corrected vertical pixel count.

Figure 11

Figure 12

EXAMPLE VI: WINCAMD BUTTON
To acquire data from a button, the GetData Control object

must be wired to an invoke node. Select GetOcxResult from the

list of available methods on the invoke node (see Figure 13). The

ID of the button whose data is requested must be wired to the

IndexToValue input on the invoke node. The button ID can be

found via the instructions in the Extending the GUI section. The

invoke node will now return the button value. The majority of

the time, the GetData Control object can return a button’s data

without the button ActiveX object being placed on the front

panel.

EXAMPLE VI: WINCAMD EVENT
Often times, the user wishes to record data based on when a new

frame has entered the camera. In this case, we can use the

Register Event Callback function for ActiveX (see Figure 14). Add

the Register Event Callback function to the block diagram and

wire the GetData Control reference to the Event input. Then select

the DataReady event from the list of events provided. The

DataReady event executes the event callback function whenever a

new frame of data is available. Next, wire the GetData Control to

the To Variant function and then to the User Parameter input

(which requires a variant data type). The Register Event Callback

calls a reference VI when the event is triggered, but the User

Parameter input must be wired before creating the reference VI.

Once all the previous steps have been completed, right click the VI

Ref input and select Create Callback VI from the list provided. A

reference VI will be created with the Event Common Data, Control

Ref, and Variant variables inside (see Figure 15). This VI will be called

each time a new event occurs, that is when the next frame is

available. Next, in the reference VI convert the variant data back

into the ActiveX reference data type. Now invoke and property

nodes can be used with the GetData Control reference. However,

the invoke nodes must be programmed with the correct method on

the main VI and then copied over to the reference VI since the

invoke and property nodes won’t automatically populate a list of

available methods. A while loop is included in the main VI to keep

the program running and look for events and after the loop has

been stopped, the Register for Events function closes the event

reference.

Figure 13

Figure 14: Main VI

Figure 15: Reference VI

EXAMPLE VI: BEAMMAP
To acquire data from the BeamMap slit profiler, a similar

process is used. The BeamMap does not have a camera

from which data can be taken and instead only the

integrated intensity along the x and y axes is measured.

Information from these axes can be recorded by

connecting an invoke node to the respective profile

object (see Figure 16). After connecting the profile object

to the invoke node, select GetProfileDataAsVariant

from the list of methods provided. To convert the data,

use the Variant to Data Function from the Variant

Functions palette. Use a constant array of U16 as the

type input on the Variant to Data Function. Using

double or other signed variables for Figure 16 the input

type will induce errors in the sign values produced because it is

unsigned. The pixel data is returned from the Variant to Data

Function as a 1D U16 array. The 1D array contains all the

intensity values from the profile. The step size can also be

returned by connecting a second invoke node to the profile

object and selecting GetStepSize from the list of methods.

With both the intensity data and the step size, the data may

be recorded or graphed. In the example, the option to add

the step size to the beginning of the 1D array is included.

Additionally, ability to take button data is included in the VI.

Lastly, to open up the M^2 and Divergence dialog boxes, wire

two invoke nodes to the GetData Control object (see Figure

17). From the methods available select IsMSquaredOpen

from the first invoke node, and IsDivergenceOpen from the

second. To open a dialog box, wire a 1 to the invoke node

input. Likewise, to close the dialog box wirea 0 to the invoke

node input. If the dialog boxes fail to appear, or Figure 17

appears with strange dimensions, try lowering the display

resolution.

Figure 16

Figure 17

EXAMPLE VI: WINCAMD MULTICAMERA
The OCX can run up to four concurrent camera-based DataRay

devices. This example VI allows the user to run and record

measurements from three devices in parallel (see Figure 18).

First, add a GetData Control and a PaletteBar Control by

using the methods described in the basic tutorial. Next, create a

CCDimage Control, but repeat the process two additional times

to create a total of three CCDimage Controls. Attach three

invoke nodes to the GetData Control. From the first invoke

node, select StopDevice. From the second invoke node, select

StartDriver. From the third invoke, select SetCurrentDevice

method and set the DeviceType variable to 10 (see Figure 19).

This value indicates that we will be using three DataRay devices

concurrently. When using two concurrent devices, this value must be set to 9. When using four concurrent devices, this

value must be set to 11. For more information on the SetCurrentDevice function, please see the OCX documentation.

Instead using an additional invoke node to programmatically start the device, we will include a Status Button that allows

us to start and stop all the devices from the GUI. To create a Status Button, create a Button Control and change the

ButtonID to 297. Finally, we will include additional Button Controls that will display the major beam diameter, minor

beam diameter, and the X and Y coordinates of the beam centroid for each device. When using Button Controls to

display beam metrics in multicamera mode, it is necessary to choose button indexes that apply to the camera of

interest. When using multicamera mode, we are typically interested in button indexes 337-424. For example, to display

the major beam diameter recorded by the first camera, use button index 345. To display the major beam diameter

recorded by the second camera, use button index 346. All relevant button indexes are available here.

Figure 18

Figure 19

https://www.dataray.com/assets/pdf/OCXDocumentation.pdf
https://dataray-web.s3.amazonaws.com/pdf/dataray-index-to-test-parameters-enum.pdf

