

Interfacing to MATLAB

OVERVIEW:
• Getting Started

o Interfacing with OCX

o Installation

• Basic Tutorial

o GUI with MATLAB's GUIDE

o First Button & Image

o More ActiveX Controls

o Extending the GUI

• Advanced Tutorial

o MATLAB Controls

o Getting Data

o Events

GETTING STARTED:
INTERFACING WITH OCX
Your interfacing code communicates with DataRay products through the DataRay OCX. The OCX has ActiveX controls that

can be accessed from a variety of Windows based environments. The OCX is automatically generated and registered with

the Windows operating system upon installing the DataRay software. Once initialized, the OCX is always running. This

means that the camera is still running, even while editing GUI elements in Visual Studio or the GUI in MATLAB’s GUIDE.

Unfortunately, while this characteristic of the OCX is useful for creating interfaces in some languages, it causes MATLAB

to crash, and as a result, ActiveX components must be added to a GUI interface programmatically. Also, for reasons

unknown, an interface can only be run once per MATLAB session.

SOME IMPORTANT NOTES:
• The OCX is functional only as part of a GUI-based program. In this tutorial, we use MATLAB’s .fig and GUIDE.

• Since the OCX is 32-bit, you will need associated 32-bit MATLAB and libraries

• The OCX and DataRay program cannot be used at the same time

INSTALLATION:
First we need to install the DataRay Software:

• As Administrator, install the DataRay software which came with your product.

• Attach the profiler product. Allow the drivers to install.

• Open the DataRay software and select your profiler in the Device pull-down menu.

• Learn to use your product in the DataRay software. Then close the software.

You can download the interface developed in this tutorial. It exists as a collection of 3 MATLAB files.

• Cameras: Download & unzip WinCamD

• BeamMap2: Download & unzip BeamMap2

This example should build and run with no errors. Not working? Email support@dataray.com or call 530-395-2500 with:

• Device name and serial number

• DataRay and Windows versions which you are using.

BASIC TUTORIAL:

We will show you step-by-step how the example program was created in MATLAB.

GUI WITH MATLAB’S GUIDE

First, we will make a basic GUI with GUIDE. It supports all the items you would

expect from a GUI library. In a new folder for the 3 files which will compose the

interface, under the HOME tab click Graphical User Interface under the New

button.

For our basic interface, we will only require

adding Panels. If you need more space,

you can click the bottom corner and drag

to increase the size of your interface.

Although we are using ActiveX controls, do

not attempt to use ActiveX Control. The

other GUI interface components are fine to

use, and we will cover their use in the Advanced Tutorial section. To create the most basic interface, we will add 3 panels

for the start button, the 2D image of the beam and the Palette. The Dataray class will create the fourth required GetData

control.

https://www.dataray.com/assets/software/MATLAB_WinCamD.zip
https://www.dataray.com/assets/software/MATLAB_BeamMap2.zip
mailto:support@dataray.com

Right-click on panel and then click and drag to

establish the panel’s size (and thereby establish

the ActiveX Control’s size). Once the panels

which will hold the Active X Controls have been

placed, you may left-click them and open up the

Property Inspector to select convenient names

for them such as “startbutton” which will make it

more straight-forward to programmatically set

their ActiveX controls for them.

The Property Inspector allows you to change

many aspects of the selected GUI component

including its “Tag” which can be used by MATLAB

to interact with it programmatically. In order for

changes in the Property Inspector to be saved,

you must minimize it and save the GUI; do not

simply exit the Property Inspector. If the new tag

value is not saved, it will cause the GUI to fail.

Once you save the figure, it will create a .fig file and a .m file which will work together to create the GUI. We will edit the

.m file to make it create ActiveX controls.

FIRST BUTTON & IMAGE

To add ActiveX components, we use the handles from the GUI to instantiate them. The syntax required to instantiate

ActiveX control objects is as follows; you must use the OCX control name, a series of raw coordinates OR those

derived from the handle specified by a tag name, and a handle for the figure itself:

getDataCtrl = actxcontrol('DATARAYOCX.GetDataCtrl.1',[0,0,1,1],handles.figure1);

CCDctrl

=actxcontrol('DATARAYOCX.CCDimageCtrl.1',getpixelposition(handles.twod),handles.fig

ure1);

The ActiveX controls are vital for communication to and from the instance of the DataRay program created by the

interface. For example, the GetDataCtrl control must be present for the OCX to start and its “StartDriver” method must

be called for devices to be recognized.

getDataCtrl.StartDriver();

To make the controls accessible by other methods of our GUI class, we will add the Dataray class from Dataray.m to our

GUI object which will hold all of the ActiveX controls. The reason for doing this will become clearer in the Advanced

Tutorial. When the Dataray class is created, the getDataCtrl object is created and the “StartDriver” method is called from

its member variable referring to the GetData ActiveX controls like so:

dObj.getDataCtrl.StartDriver();

The Dataray class has a useful function for setting buttons to the GUI and storing their respective ActiveX controls into

an array:

% set button on top of existing uipanel

function setButtonPanel(dObj,panel_handle,buttonID)

 % create button actxcontrol and place on top of the panel

 dObj.btnCtrls{end+1} =

actxcontrol('DATARAYOCX.ButtonCtrl.1',getpixelposition(panel_handle),dObj.currentFi

gure);

 dObj.btnCtrls_handles{end+1} = panel_handle; % save handle to panel in an array

 set(dObj.btnCtrls{end},'ButtonID',buttonID); % set the ButtonID member variable

end

The above method on the Dataray class does all of the work for adding buttons to the interface. Adding the following to

your GUI’s opening function will create the ActiveX components for the interface; make sure to have the handles added

after they have been created:

function basic_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to basic (see VARARGIN)

% Choose default command line output for basic
handles.output = hObject;

handles.DATARAY = Dataray(handles.figure1); % create DATARAY class
handles.DATARAY.setCCDpanel(handles.twod)
handles.DATARAY.setButtonPanel(handles.startbutton,297); % set start button
handles.DATARAY.setButtonPanel(handles.button1,171);
handles.DATARAY.setPalettePanel(handles.palette);

% Update handles structure
guidata(hObject, handles);

MORE ACTIVEX CONTROLS

We will now add

more buttons

and profiles to

the interface.

Adding profiles

not only helps

display

information, but

also it provides

the functionality

to pull data from

the camera. We

need to go back

to our GUI and

add more panels.

The initialization code to initialize this GUI is as follows:

handles.DATARAY = Dataray(handles.figure1); % create DATARAY class

handles.DATARAY.setCCDpanel(handles.twod)
handles.DATARAY.set3DPanel(handles.threed)
handles.DATARAY.setButtonPanel(handles.startbutton,297); % set start button
handles.DATARAY.setButtonPanel(handles.button1,171); % set start button
handles.DATARAY.setButtonPanel(handles.button2,172); % set start button
handles.DATARAY.setButtonPanel(handles.button3,177); % set start button
handles.DATARAY.setButtonPanel(handles.button4,179); % set start button
handles.DATARAY.setProfilesPanel(handles.profile1,22); % set start button
handles.DATARAY.setProfilesPanel(handles.profile2,23); % set start button
handles.DATARAY.setPalettePanel(handles.palette);

EXTENDING THE GUI
Besides the names of the ActiveX controls, you will need to know the ID’s for specific

button and profiles. In order to find the correct Button ID# to use for the buttons,

you need to:

1) Close your GUI and open the DataRay software

2) Right click on any button, to see the dialog on the right

3) Note the current Name and ID# for this result at the top of the dialog

4) Repeat for all the results of interest. Close the DataRay Software

There are complete lists of ID’s for profiles and buttons available in interface section of the DataRay website:

Profiles: http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf

Buttons: http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf

Finally, there is documentation describing the methods and properties of all the ActiveX controls:

http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

This completes the basic tutorial! Problems/Questions? Please contact us with the information listed above

http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf
http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf
http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

ADVANCED TUTORIAL:
MATLAB CONTROLS
MATLAB provides its own controls and input methods. These can be used to provide custom functionality to your GUI. In

this case, we will be using them to select data to write to a file.

First, we will add one

static text label, one edit

text control (text input),

two radio buttons in a

button group, one pop-

up meu (a dropdown

list) and one button to

our GUI with GUIDE:

 The button group

component is like a

panel, but it makes radio

buttons operate as a

group; only one radio

button in a button group

can be selected. GUI

components can have

their properties set

programmatically, but in

this tutorial, we will use

the Property Inspector

to set them.

String: • For most components, the String property will
set the text it displays

• For the pop-up menu, we will want to click the
list display of the String property and enter
one choice per line

Value • For radio buttons, 1 is true and 0 is false

• For pop-up menus, 1 is the first item, 2 is the
second item, etc…

Entire tutorials have been written about events and binding in MATLAB. We will stick to the basics. The GUIDE will create

functions which will be called on interactions with the various GUI components. You can specify more actions to take

when, for instance, the component is created or destroyed by right-clicking on the element and selecting view callbacks.

In this case, we will be working with one which is created automatically:

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

%contents = cellstr(get(handles.popupmenu1,'String'));

fprintf('Option %d selected \n', get(handles.popupmenu1,'Value'));

fprintf('%s \n', handles.DATARAY.btnCtrls{2}.GetParameter());

The above prints out two items when the “Write” button is hit. First, it prints out the item selected in the pop-up menu by

its position. The second item we are printing is the value of the second ActiveX button control we added to the interface;

the first is the start button. In general, the syntax to get the value of a GUI component is get(handles.[component’s tag],

“Property name”). GUIDE also prints out useful tips near the callbacks of items.

GETTING DATA
Now that we have an understanding of how MATLAB GUI components can be set up, we will rewrite the callback method

to output data to a comma separated value file with the csvwrite function. Whenever you are writing a file it is crucial to

make sure you have write privileges for the directory by either selecting a public directory or running the program as

administrator. With the following code, we can write .csv files to be analyzed in MATLAB or Excel.

function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%contents = cellstr(get(handles.popupmenu1,'String'));
fname = get(handles.edit1,'String')
if get(handles.radiobutton1,'Value') %this is for profiles
 axis = get(handles.popupmenu1,'Value');
 data = handles.DATARAY.profileCtrls{axis}.GetProfileDataAsVariant();
 csvwrite(fname, data);
else % this is for image data
 data = handles.DATARAY.getDataCtrl.GetWinCamDataAsVariant();
 denom = 2;
 if

handles.DATARAY.getDataCtrl.CaptureIsFullResolution();
 denom = 1;
 end
 display(denom)
 m = handles.DATARAY.getDataCtrl.GetHorizontalPixels()

/denom;
 n = handles.DATARAY.getDataCtrl.GetVerticalPixels()

/denom;
 image_data = reshape(data,m,n)
 csvwrite(fname, image_data);
end

Both methods return a 1-D matrix of data. Therefore, if you wish to have all the values of the raw pixels in their proper

locations from the GetWinCamDataAsVariant method, it is necessary to reshape the matrix.

EVENTS
Besides communicating through interfaces to the DataRayOCX, there is a system of events which allow the DataRayOCX

to communicate back. One of the most useful events is the GetData control’s SendMessage event which is used for internal

communication in the DataRay program; most users are interested in the message with ID # 21 as its 3rd argument which

is used whenever a new frame is available.

The object which listens for events is called a sink. We make a function and pass it to the GetData control as a callback

for the SendMessage event in the Dataray object:

 handlerMessage = @dObj.eventCallback;
 dObj.getDataCtrl.registerevent({'SendMessage',handlerMessage});
 end

 function eventCallback(dObj,varargin)
 if varargin{3} == 21
 dObj.eventcounter = dObj.eventcounter +1;
 display(sprintf('%d frames seen', dObj.eventcounter));
 end
 end

This will print out the total number of frames seen by incrementing a counter. Many customers have found this useful for

running data analysis routines on every x number of frames.

BeamMap2 Tutorial:
You can download the interface developed in this tutorial as a collection of 3 MATLAB files from the link that is available

on the first page of this document. Please build and run this example before you continue. The example should be fully

functional and appear like the image displayed below.

This tutorial is brief because it references many of the techniques described in the Basic and Advanced WinCam tutorials;

however, we will be using Button ID#s, Profile ID#s and functions unique to the BeamMap2. Please make yourself familiar

with the other tutorials before attempting to recreate this example.

Creating DataRay Button Controls
1) Create a GetData Control and a Status Button (ButtonID# = 104) Button Control by using the instructions on

pages 1-4 of the Basic WinCam Tutorial.

2) Unlike the WinCam tutorials, this example does not use a ccdImage Control. Instead, this example uses a TwoD

Control. Follow the instructions on pages 3-4 of the Basic WinCam tutorial, but create and use the setTwoDPanel

function (shown below) instead of the setCCDPanel function:

function setTwoDpanel(dObj,panel_handle)

 % create CCD actxcontrol and place on top of the panel

 dObj.TwoDctrl =

actxcontrol('DATARAYOCX.TwoDCtrl.1',getpixelposition(panel_handle),dObj.currentFigure);

end

3) Create the X2c (ButtonID# = 104), Y2c (ButtonID# = 105), and Ellipticity (ButtonID# = 126) Button Controls by

using the same steps you used to create the Status Button, but by substituting in the appropriate ButtonID#s.

4) Create the Wander Display for tracking the centroid position by creating a Button Control and assigning it Button

ID# 197.

CREATING DATARAY PROFILE CONTROLS
5) Create four unique Profile Controls by following the instructions on page 5 of the Basic WinCam Tutorial. Instead

of using ProfileID#s 22 and 23, which correspond to the profiles along the WinCamD crosshairs, you will need to

use ProfileID#s that apply to the BeamMap2. The example program uses the following commands to set the

profiles upon initialization:

handles.DATARAY.setProfilesPanel(handles.uipanelProfile,14); % set U1 prof.

handles.DATARAY.setProfilesPanel(handles.uipanelProfile2,16); % set U2 prof.

handles.DATARAY.setProfilesPanel(handles.uipanelProfile3,18); % set U3 prof.

handles.DATARAY.setProfilesPanel(handles.uipanelProfile4,20); % set U4 prof.

Please note that these ProfileID#s (14, 16, 18, 20) correspond to the u-profiles at each of the four z-positions on the BeamMap2

puck. We will create radio buttons that allow the user to toggle between the u and v-profiles. The v-profiles have their own

ProfileID#s (15, 17, 19, 21).

6) Create the Radio Buttons that are used to select the u or v-profiles by using the methods discussed on the first page of the

Advanced WinCam tutorial. Make sure the default radio button selected corresponds to the default profile setting, which is the

u-profile in this example. We assigned the tag radiobuttonProfileU to the u-profiles radio button to check its state in the

following function. This function executes when the user-selected radio is changed in the button group:

function uibuttongroup1_SelectionChangedFcn(hObject, eventdata, handles)

% hObject handle to the selected object in uibuttongroup1

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile); % get activeX

control variable to directly access its Parameters (or Functions)

if get(handles.radiobuttonProfileU,'value') == 1

 set(profile_actxControl,'MyID',14); % set profile U

else

 set(profile_actxControl,'MyID',15); % set Profile V

end

profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile2);

if get(handles.radiobuttonProfileU,'value') == 1

 set(profile_actxControl,'MyID',16); % set profile U

else

 set(profile_actxControl,'MyID',17); % set Profile V

end

profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile3);

if get(handles.radiobuttonProfileU,'value') == 1

 set(profile_actxControl,'MyID',18); % set profile U

else

 set(profile_actxControl,'MyID',19); % set Profile V

end

profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile4);

if get(handles.radiobuttonProfileU,'value') == 1

 set(profile_actxControl,'MyID',20); % set profile U

else

 set(profile_actxControl,'MyID',21); % set Profile V

end

USING DATARAY’S GETDATA CONTROL
7) Next, we will use the GetData Control to open the M2 Dialog and programmatically extract data. First, we need to

create a way to access the GetData Control’s methods from the MATLAB file that contains all the GUI methods.

Since the GetData Control object belongs to the DataRay class, we will create a function in the DataRay class that

returns access to the GetData Control object:

% get the activeX control of a specified panel or panel number to get access to further functions

of this control

function actxCtrl = getGetDataCtrl(dObj)

% get activeX control to get access to get data ctrl functions

 actxCtrl = dObj.getDataCtrl;

end

This function is used in the callback functions that belong to the Open/Close M2 Dialog Button and

GetOCXResult(M^2_u) buttons.

8) Create a Push Button using MATLAB’s GUIDE. In the example, we assigned this button the tag m2Button and the

string Open/Close M2 Dialog. We use our function from step 7 to gain access to the GetData Control. We use

the GetData Control to set change the state of its member IsMSquaredOpen, which effectively opens and closes

the M2 Dialog. To use a single button to close and open the M2 Dialog, the button’s callback function should be as

follows:

% --- Executes on button press in m2Button.

function m2Button_Callback(hObject, eventdata, handles)

% hObject handle to m2Button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

getData_actxControl = handles.DATARAY.getGetDataCtrl(); % get activeX control variable to

directly access its Parameters (or Functions)

if (getData_actxControl.IsMSquaredOpen == 0)

 getData_actxControl.IsMSquaredOpen = 1; %opens the M2 dialog

else

 getData_actxControl.IsMSquaredOpen = 0; %closes the M2 dialog

end

9) Similarly, we will create another Push Button using MATLAB’s GUIDE and use the GetData Control in its

callback function to get the result of the M2 calculation at the instant the button is clicked. In the example we

used getOCXResultButton as the tag and GetOCXResult(M^2_u) for the string of the button. Use MATLAB’s

GUIDE to create a Static Text element to display the result. We used textOCXResult as the tag for the Static

Text element. The GetData Control’s GetOcxResult() function accepts any ButtonID# as its parameter and

returns the value that would be calculated and displayed on the corresponding Button Control. This callback

function is used to display the result of the M2 calculation in the Static Text:

% --- Executes on button press in getOCXResultButton.

function getOCXResultButton_Callback(hObject, eventdata, handles)

% hObject handle to getOCXResultButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

getData_actxControl = handles.DATARAY.getGetDataCtrl(); % get activeX control variable to

directly access its Parameters (or Functions)

result = getData_actxControl.GetOcxResult(156); %156 is the index/ID that applies to m^2_u

set(handles.textOCXResult,'String', result);

EXPORTING PROFILE DATA TO CSV

10) Next, we will use GUIDE to create a group of four Radio Buttons. These elements will allow the user to choose

any of the four profiles that are currently displayed and export the profile’s data. In the example program, we used

the radio button tags radio1, radio2, radio3, and radio4.

11) In addition, we will use the GUIDE to create an Edit Control with the tag editCSVPath and string

C:\Users\Public\Documents\output.csv. This string of this edit control contains the path where the file will be

generated and saved when we write to CSV.

12) Finally, we create a Push Button with tag writeToCSVButton and string Write to CSV. This button’s callback

function will write the selected profile (identified by the state of the four radio buttons and the u-profile / v-profile

radio buttons) to a CSV. Here is the callback function:

% --- Executes on button press in writeToCSVButton.

function writeToCSVButton_Callback(hObject, eventdata, handles)

% hObject handle to writeToCSVButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

path = get(handles.editCSVPath,'String');

if get(handles.radio1,'value') == 1 %1 means it is selected

 profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile); % get activeX

control variable to directly access its Parameters (or Functions)

end

if get(handles.radio2,'value') == 1 %1 means it is selected

 profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile2); % get

activeX control variable to directly access its Parameters (or Functions)

end

if get(handles.radio3,'value') == 1 %1 means it is selected

 profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile3); % get

activeX control variable to directly access its Parameters (or Functions)

end

if get(handles.radio4,'value') == 1 %1 means it is selected

 profile_actxControl = handles.DATARAY.getProfileCtrl(handles.uipanelProfile4); % get

activeX control variable to directly access its Parameters (or Functions)

end

data = profile_actxControl.GetProfileDataAsVariant();

csvwrite(path,data);

The Profile Control’s GetProfileDataAsVariant returns the current profile data as a variant array.

This completes the BeamMap2 tutorial! Problems/Questions? Please contact us with the information listed above.

