support@dataray.com

1675 Market Street
Redding, CA 96001

+1 530 395 2500

o N

-~

DATA Ré\)(*

Interfacing to MATLAB

WinCam Interface - 0 IEX
OVERVIEW:

Xe  -243.7 um

e  Getting Started
o Interfacing with OCX

“W‘l i

o Installation

File file_path/filename
e Basic Tutorial Deie
®) Profile Image
o GUI with MATLAB's GUIDE X profie v wme
o First Button & Image
o More ActiveX Controls 2o Ze787 um [z 17420 um
'_Zﬂub 2702.4 um 2Wvb 1076.7 um
o Extending the GUI I
e Advanced Tutorial
o MATLAB Controls Scale = 1750.0 umjdiv|Peak = 68.8 %, B =2. Scale = 1750.0 umjdiv|Peak = 64.2 %, B = 2.

o Getting Data
o Events

GETTING STARTED:
INTERFACING WITH OCX

Your interfacing code communicates with DataRay products through the DataRay OCX. The OCX has ActiveX controls that
can be accessed from a variety of Windows based environments. The OCX is automatically generated and registered with
the Windows operating system upon installing the DataRay software. Once initialized, the OCX is always running. This
means that the camera is still running, even while editing GUI elements in Visual Studio or the GUI in MATLAB's GUIDE.
Unfortunately, while this characteristic of the OCX is useful for creating interfaces in some languages, it causes MATLAB
to crash, and as a result, ActiveX components must be added to a GUI interface programmatically. Also, for reasons
unknown, an interface can only be run once per MATLAB session.

SOME IMPORTANT NOTES:

e The OCXis functional only as part of a GUI-based program. In this tutorial, we use MATLAB's .fig and GUIDE.
e Since the OCX is 32-bit, you will need associated 32-bit MATLAB and libraries
e The OCX and DataRay program cannot be used at the same time

INSTALLATION:

First we need to install the DataRay Software:
e As Administrator, install the DataRay software which came with your product.
e  Attach the profiler product. Allow the drivers to install.
e  Open the DataRay software and select your profiler in the Device pull-down menu.

e Learn to use your product in the DataRay software. Then close the software.




Redding, CA 96001
¢’ +1530 3952500

¥ support@dataray.com
ATARAY o
I o

You can download the interface developed in this tutorial. It exists as a collection of 3 MATLAB files.
e Cameras: Download & unzip WinCamD

e BeamMap2: Download & unzip BeamMap2

This example should build and run with no errors. Not working? Email support@dataray.com or call 530-395-2500 with:
¢ Device name and serial number

e DataRay and Windows versions which you are using.

BASIC TUTORIAL: 4

v

We will show you step-by-step how the example program was created in MATLAB.

GUI WITH MATLAB'’S GUIDE

- Script Ctri+N
LD John ¥

Curre I..‘r_tj Function

First, we will make a basic GUI with GUIDE. It supports all the items you would
expect from a GUI library. In a new folder for the 3 files which will compose the
interface, under the HOME tab click Graphical User Interface under the New o ¥ Example

button.
& Class
st untitled1 fig -8 “ —
é System Object >
File Edit View Layout Tools Help —
DEWE $mB9 - a4 EH% > F2 -
E‘ N | | Figure
b=
e I .--. Graphical User Interface I
® J
ol | LEJ Command Shortcut
= =l
=] SIMULINK
T
ijf ti Simulink Model

Stateflow Chart

=1 simulink Project >

For our basic interface, we will only require
adding . If you need more space,
you can click the bottom corner and drag
to increase the size of your interface.
Although we are using ActiveX controls, do
< > not attempt to use ActiveX Control. The
ll=giiiatte] Qe [0 ||Resiwer FED 1O, 6 ] other GUI interface components are fine to
use, and we will cover their use in the Advanced Tutorial section. To create the most basic interface, we will add 3 panels

for the start button, the 2D image of the beam and the Palette. The Dataray class will create the fourth required GetData
control.

-
S N W \
— \



https://www.dataray.com/assets/software/MATLAB_WinCamD.zip
https://www.dataray.com/assets/software/MATLAB_BeamMap2.zip
mailto:support@dataray.com

T ¥ support@dataray.com
A A A 9 1675 Market Street
Redding, CA 96001
f 4

¢’ +1530 3952500

Panel

Right-click on panel and then click and drag to
establish the panel's size (and thereby establish
the ActiveX Control's size). Once the panels
which will hold the Active X Controls have been
placed, you may left-click them and open up the
Property Inspector to select convenient names
for them such as “startbutton” which will make it
more straight-forward to programmatically set Cut Ctrl+X
their ActiveX controls for them. ] o o
Clear

Panel

The Property Inspector allows you to change — Duplicate Ctrl+D
many aspects of the selected GUI component 8ring to Front Ctri+F
including its “Tag” which can be used by MATLAB  — send to Back Crrl+8
to interact with it programmatically. In order for Uggest Brmoes

Editor

changes in the Property Inspector to be saved,
you must minimize it and save the GUI; do not
simply exit the Property Inspector. If the new tag
value is not saved, it will cause the GUI to fail.

View Callbacks

Property Inspector

ranel Froperty editor...

Once you save the figure, it will create a .fig file and a .m file which will work together to create the GUI. We will edit the
.m file to make it create ActiveX controls.

= Inspector: matlab.ui.container.Panel — B
TS
FontUnits paints -
FontWeight normal r
ForegroundColor ﬂ |
HandleVisibility on r
HighlightColor L=
Interruptible On
Position [8.857 28.647 26.857 3.588]
ShadowColor ﬂ =
SizeChangedFcn @ &
Tag startbutton &
Title E\| Panel &
TitlePosition lefttop r
UlContextMenu <MNone> -
Units characters =
UserData ﬂ &
Visible On v




¢’ +1530 3952500

T ¥ support@dataray.com

A A A 9 1675 Market Street
Redding, CA 96001

) e 4

FIRST BUTTON & IMAGE

To add ActiveX components, we use the handles from the GUI to instantiate them. The syntax required to instantiate
ActiveX control objects is as follows; you must use the OCX control name, a series of raw coordinates OR those
derived from the handle specified by a tag name, and a handle for the figure itself:

getDataCtrl = actxcontrol ('DATARAYOCX.GetDataCtrl.1l', ;handles. figurel) ;
CCDctrl

=actxcontrol ('DATARAYOCX.CCDimageCtrl.1"', ;handles.fig
urel) ;

The ActiveX controls are vital for communication to and from the instance of the DataRay program created by the
interface. For example, the GetDataCtrl control must be present for the OCX to start and its “StartDriver” method must
be called for devices to be recognized.

getDataCtrl.StartDriver () ;

To make the controls accessible by other methods of our GUI class, we will add the Dataray class from Dataray.m to our
GUI object which will hold all of the ActiveX controls. The reason for doing this will become clearer in the Advanced
Tutorial. When the Dataray class is created, the getDataCtrl object is created and the “StartDriver” method is called from
its member variable referring to the GetData ActiveX controls like so:

dObj.getDataCtrl.StartDriver () ;

The Dataray class has a useful function for setting buttons to the GUI and storing their respective ActiveX controls into
an array:
% set button on top of existing uipanel
function setButtonPanel (dObj,panel handle,buttonID)
% create button actxcontrol and place on top of the panel
dObj.btnCtrls{end+l} =
actxcontrol ('DATARAYOCX.ButtonCtrl.1',getpixelposition (panel handle),dObj.currentFi
gure) ;
dObj.btnCtrls handles{end+1l} = panel handle; % save handle to panel in an array
set (dObj.btnCtrls{end}, 'ButtonID',buttonID); % set the ButtonID member variable
end

The above method on the Dataray class does all of the work for adding buttons to the interface. Adding the following to
your GUI's opening function will create the ActiveX components for the interface; make sure to have the handles added
after they have been created:




¥ support@dataray.com
A ,A A Q 675 Market Street
Redding, CA 96001
N -

¢’ +1530 3952500

function basic OpeningFcn (hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to basic (see VARARGIN)

% Choose default command line output for basic
handles.output = hObject;

handles.DATARAY = Dataray (handles.figurel); % create DATARAY class
handles.DATARAY.setCCDpanel (handles. twod)

handles.DATARAY.setButtonPanel (handles.startbutton,297); % set start button
handles.DATARAY.setButtonPanel (handles.buttonl,171);
handles.DATARAY.setPalettePanel (handles.palette);

[

s Update handles structure
guidata (hObject, handles);

4| basic - o IEH

Ready #1LCM.7 Xe  -231.2um

/

image valid Good frames: 462 Bad Framas 0

Hypercal engaged Baseline: 2.41 Baseline $TD: 0.10%

Frame rats: 172 FP$ Framas averaged: 5 ADC Offset: -316 DNs




¢’ +1530 3952500

T ¥ support@dataray.com
A A A 9 1675 Market Street

Redding, CA 96001
e 4

MORE ACTIVEX CONTROLS

We will now add = basic fig - o IEN|

more buttOnS File Edit View Layout Tools Help

and profiles to D@ s 2EBhd Bs% | N _

the interface. - - - ’
Addlng profiles I;I CPanel i B ]

not only helps | & L L u -

display =& Panel Panel

information, but | [m N -
also it provides =

the functionality
to pull data from N
the camera. We ‘ ‘ ‘ ‘ L
need to go back
to our GUI and — —
add more panels.

T
i

X |

Panel Panel

< >

Tag: figurel Current Point: [402, 257] Position: [680, 556, 969, 450]

The initialization code to initialize this GUI is as follows

handles.DATARAY = Dataray (handles.figurel); % create DATARAY class

handles.DATARAY.setCCDpanel (handles.twod)

handles.DATARAY.set3DPanel (handles.threed)

handles.DATARAY.setButtonPanel (handles.startbutton,297); % set start button
handles.DATARAY.setButtonPanel (handles.buttonl,171); set start button
handles.DATARAY.setButtonPanel (handles.button2,172) ; set start button
handles.DATARAY.setButtonPanel (handles.button3,177) ; set start button
handles.DATARAY.setButtonPanel (handles.button4,179); set start button
handles.DATARAY.setProfilesPanel (handles.profilel,22); % set start button
handles.DATARAY.setProfilesPanel (handles.profile2,23); % set start button
handles.DATARAY.setPalettePanel (handles.palette);

o o oe

o\°




¥ support@dataray.com
1675 Market Street

¢

DATA R,gx* o

EXTENDING THE GUI

Redding, CA 96001
+1 530 395 2500

Besides the names of the ActiveX controls, you will need to know the ID's for specific TN o 5
button and profiles. In order to find the correct Button ID# to use for the buttons,
| Button colors, press color to change.
you need to:
|N0rmal Text | Pass Text | Fail Text | Ireealid Text ‘BackGround
1) Close your GUI and open the DataRay software -
2) nght click on any button, to see the dlalog on the rlght 0.0 0x8000 0xGR00FF 020FF 0<EODEOED
3) Note the current Name and ID# for this result at the top of the dialog Setto defauls | Carcel

4) Repeat for all the results of interest. Close the DataRay Software

There are complete lists of ID's for profiles and buttons available in interface section of the DataRay website:

Profiles: http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf

Buttons: http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf

Finally, there is documentation describing the methods and properties of all the ActiveX controls:
http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

This completes the basic tutorial! Problems/Questions? Please contact us with the information li

(4] basic

Running #1 LCM.7

Xe  -232.0 um ¥e -1215.0 um

sted above

Ellip. 0.60 Orient:11.8 deg.
2lva 1739.0 um
b 1061.1 um
Empty Scale = 1750.0 um{div|Peak = 65.2 %, B = 2.4



http://www.dataray.com/UserFiles/file/ProfilesEnum.pdf
http://www.dataray.com/UserFiles/file/IndexToTestParametersEnum.pdf
http://www.dataray.com/assets/pdf/OCXDocumentation.pdf

DATA Régk

ADVANCED TUTORIAL:
MATLAB CONTROLS

¥ support@dataray.com

9 1675 Market Street
Redding, CA 96001

¢’ +1530 3952500

MATLAB provides its own controls and input methods. These can be used to provide custom functionality to your GUI. In

this case, we will be using them to select data to write to a file.
)

File Edit View Layout Tooks Help

First, we will add one
NSH $RaR20 2B0hd BX% | P

static text label, one edit

text control (text input), [A] Panel Fanel
two radio buttons in a =

Q E Panel Panel
button group, one pop- .
up meu (a dropdown =

= |E Panel Pansl
list) and one button to =@
our GUI with GUIDE: i File file_pathifiename

Data

The button group | @ x S O tmge
component is like a Xprofie v wne

panel, but it makes radio
buttons operate as a
group; only one radio Fane!
button in a button group
can be selected. GUI
components can have
their  properties set
programmatically, butin

basic.fig

Panel

Panel

= B

this tutorial, we will use <
the Property |n5pect0r Tag: figurel Current Point: [685, 339] Position: [680, 341, 970, 462]
to set them. -
String: e For most components, the String property will = Igpeiar b net S - °
. . NN S 5
set the text it displays B[E we ! =
gt X profile
) ) = pro.
e Forthe pop-up menu, we will want to click the B :”E:I'”V“”:Cli:’ ¥ profild
andlevisibiln
list display of the String property and enter HorizontalAlignment
one choice per line Interruptible
KeyPressFen
KeyReleaseFen
ListboxTop
Max
. . . M
Value e Forradio buttons, 1 is true and 0 is false . p
&) Pasition 0K Cancel
e  For pop-up menus, 1 is the first item, 2 is the =
. ring
second item, etc... Style pepupmenu -
Tag popupmenul &
TooltipString &
UlContextMenu «Mone» -
Units characters i
UserData Ba &
Value E &
Visible [+] On




T ¥ support@dataray.com
A A A 9 1675 Market Street
Redding, CA 96001
e o

¢’ +1530 3952500

Entire tutorials have been written about events and binding in MATLAB. We will stick to the basics. The GUIDE will create
functions which will be called on interactions with the various GUI components. You can specify more actions to take
when, for instance, the component is created or destroyed by right-clicking on the element and selecting view callbacks.
In this case, we will be working with one which is created automatically:

function pushbuttonl Callback (hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Scontents = cellstr (get (handles.popupmenul, 'String'));

fprintf( 'Option %d selected \n', get(handles.popupmenul, 'Value'));
fprintf ('%s \n', handles.DATARAY.btnCtrls{2}.GetParameter()):;

The above prints out two items when the “Write” button is hit. First, it prints out the item selected in the pop-up menu by
its position. The second item we are printing is the value of the second ActiveX button control we added to the interface;
the first is the start button. In general, the syntax to get the value of a GUI component is get(handles.[component’s tag],
“Property name”). GUIDE also prints out useful tips near the callbacks of items.

GETTING DATA

Now that we have an understanding of how MATLAB GUI components can be set up, we will rewrite the callback method
to output data to a comma separated value file with the csvwrite function. Whenever you are writing a file it is crucial to
make sure you have write privileges for the directory by either selecting a public directory or running the program as
administrator. With the following code, we can write .csv files to be analyzed in MATLAB or Excel.

function pushbuttonl Callback (hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

scontents = cellstr (get (handles.popupmenul, 'String'));
fname = get (handles.editl, 'String')
if get (handles.radiobuttonl, 'Value') %this is for profiles
axis = get (handles.popupmenul, 'Value');
data = handles.DATARAY.profileCtrls{axis}.GetProfileDataAsVariant () ;
csvwrite (fname, data);
else % this is for image data
data = handles.DATARAY.getDataCtrl.GetWinCamDataAsVariant () ;
denom = 2;

if
. @ d
handles.DATARAY.getDataCtrl.CaptureIsFullResolution(); o | INSERF  PAGELAYOUT  FORMULAS  DATA  REVEW v
denom = 1; o X cut . = _mm. =
q 3 o oy Calibri NIRRIr == ¥ EFWe
n oy~ » — = — =i
e ; pﬂf‘e Sromatpainter B I U~ He O A === &8 E2 Mer
display (denom) cpbora 5 .
m = handles.DATARAY.getDataCtrl.GetHorizontalPixels () n . fo | 16
/ denom; A 8 c D E F G H
n = handles.DATARAY.getDataCtrl.GetVerticalPixels () ! @! 1606 1080, 1474 M6l 170] 1580 1471
2 1673 1606 1484 1477 1463 1731 1584 1474
/ den om;, 3 1654 1587 1593 1509 1601 1642 1584 1503
. _ 1616 1478 1724 1471 1585 1625 1565 1362
1mage_data = reshape (data,m,n) 1581 1555 1615 1585 1514 1516 1612 1611

1526 1558 1558 1496 1537 1475 1555 1647
1586 1686 1603 1483 1470 1724 1570 1554

(RN

csvwrite (fname, image data);

en d 8 1520 1497 1526 1544 1652 1622 1618 1455
9 1545 1674 1475 1509 1581 1699 1644 1512




support@dataray.com

1675 Market Street
Redding, CA 96001

+1 530 395 2500

o N

-~

DATA Ré)(*

Both methods return a 1-D matrix of data. Therefore, if you wish to have all the values of the raw pixels in their proper
locations from the GetWinCamDataAsVariant method, it is necessary to reshape the matrix.

EVENTS

Besides communicating through interfaces to the DataRayOCX, there is a system of events which allow the DataRayOCX
to communicate back. One of the most useful events is the GetData control's SendMessage event which is used for internal
communication in the DataRay program; most users are interested in the message with ID # 21 as its 3" argument which
is used whenever a new frame is available.

The object which listens for events is called a sink. We make a function and pass it to the GetData control as a callback
for the SendMessage event in the Dataray object:

handlerMessage = @dObj.eventCallback;

dObj.getDataCtrl.registerevent ({'SendMessage',handlerMessage}) ;
end

function eventCallback (dObj,varargin)

if varargin{3} == 21
dObj.eventcounter = dObj.eventcounter +1;
display (sprintf ('%d frames seen', dObj.eventcounter));
end
end
4 WinCam Interface - O “

Running #1 LCM.7

UVM'I, I'l

Xc  -243.7 um Yc -1193.0 um

Ellip. 0.59 Orient-13.2 deg.
File file_path/filename
Data
(®) Profile Image
X profile v Write
2Wua 2878.7 um 2Wva 1742.0 um |
2Wub 2702.4 um 2Wvb 1076.7 um
- =
Scale = 1750.0 um{div|Peak = 68.8 %, B = 2. Scale = 1750.0 um/div|Peak = 64.2 %, B = 2.

This will print out the total number of frames seen by incrementing a counter. Many customers have found this useful for
running data analysis routines on every x number of frames.




¥ support@dataray.com
A JA A Q 675 Market Street
Redding, CA 96001
I 4

¢’ +1530 3952500

BeamMap?2 Tutorial:

You can download the interface developed in this tutorial as a collection of 3 MATLAB files from the link that is available
on the first page of this document. Please build and run this example before you continue. The example should be fully
functional and appear like the image displayed below.

4. DatarayExampleGUI - s

Open/ Close M2 Dialog

BeamMap2.4 ready
R=500um
X2c 224.6 um
Y2c 98.8 um
Ellipticity 117
GetDCXResult(M*2_u) o
2Wula 1114.3 um 2WuZa 1154.0 um
2Wulb 577.0 um 2Wulb 598.6 um
\ ik
\ y
“\ :
N 7
by , / i,
— e S — — - S —
o — 1 L. —
Select — — cale rumifdiv [zplane = -Z60 um Scale = 3000 umfdiv zplane = Tum
L& uprofile (_Jw-profile [Peak =466 % base =357 Peak = 44, ase = 3,
[SLIT 36:ADTIGSCRN 3T =) | SLIT 3 ADCIRSCRN 3B =
Path CilsersiPublic\Dacumentsioutput csv IWuda 1184.2 um 2Wuda 1288.6 um
2Wudb £13.9 um 2Wudb 669.9 um
Choose Profile: 7T, A
®102030)4 Write to CSV
r'l Ay .,’ \\
\\ J-’.’r \‘\.\
./‘I \“‘ — ,’/ \.\‘» -
Scale = 400.0 umidig 2plane = 220 um Seale = GO0 umidiy Zplane = 997 Um
eak = 45.0 % base = 35 % .
SLITARADC ASCRM 17 = SLIT 3ADCI.SCRN 4.3

This tutorial is brief because it references many of the techniques described in the Basic and Advanced WinCam tutorials;
however, we will be using Button ID#s, Profile ID#s and functions unique to the BeamMap2. Please make yourself familiar
with the other tutorials before attempting to recreate this example.

Creating DataRay Button Controls

1) Create a GetData Control and a Status Button (ButtonID# = 104) Button Control by using the instructions on
pages 1-4 of the Basic WinCam Tutorial.

2) Unlike the WinCam tutorials, this example does not use a ccdlmage Control. Instead, this example uses a TwoD
Control. Follow the instructions on pages 3-4 of the Basic WinCam tutorial, but create and use the setTwoDPanel
function (shown below) instead of the setCCDPanel function:




¥ support@dataray.com
A ’ A A 9 1675 Market Street
Redding, CA 96001
e 4

¢’ +1530 3952500

function setTwoDpanel (dObj,panel handle)

)

% create CCD actxcontrol and place on top of the panel

dObj.TwoDctrl =
actxcontrol ('DATARAYOCX.TwoDCtrl.1l',getpixelposition (panel handle),dObj.currentFigure);
end

3) Create the X2c (ButtonID# = 104), Y2c (ButtonID# = 105), and Ellipticity (ButtonID# = 126) Button Controls by
using the same steps you used to create the Status Button, but by substituting in the appropriate ButtonID#s.

4) Create the Wander Display for tracking the centroid position by creating a Button Control and assigning it Button
ID# 197.

CREATING DATARAY PROFILE CONTROLS

5) Create four unique Profile Controls by following the instructions on page 5 of the Basic WinCam Tutorial. Instead
of using ProfilelD#s 22 and 23, which correspond to the profiles along the WinCamD crosshairs, you will need to
use ProfileID#s that apply to the BeamMap2. The example program uses the following commands to set the
profiles upon initialization:

handles.DATARAY.setProfilesPanel (handles.uipanelProfile,14); % set Ul prof.
handles.DATARAY.setProfilesPanel (handles.uipanelProfile2,16); % set U2 prof.

handles.DATARAY.setProfilesPanel (handles.uipanelProfile3, 18); set U3 prof.
handles.DATARAY.setProfilesPanel (handles.uipanelProfile4, 20); set U4 prof.

Please note that these ProfilelD#s (14, 16, 18, 20) correspond to the u-profiles at each of the four z-positions on the BeamMap2
puck. We will create radio buttons that allow the user to toggle between the u and v-profiles. The v-profiles have their own
ProfilelD#s (15,17, 19, 21).

o
o

6) Create the Radio Buttons that are used to select the u or v-profiles by using the methods discussed on the first page of the
Advanced WinCam tutorial. Make sure the default radio button selected corresponds to the default profile setting, which is the
u-profile in this example. We assigned the tag radiobuttonProfileU to the u-profiles radio button to check its state in the
following function. This function executes when the user-selected radio is changed in the button group:

function uibuttongroupl SelectionChangedFcn (hObject, eventdata, handles)

% hObject handle to the selected object in uibuttongroupl
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfile); % get activeX
control variable to directly access its Parameters (or Functions)
if get (handles.radiobuttonProfileU, 'value') ==
set (profile_actxControl, 'MyID',14); % set profile U
else
set (profile actxControl, 'MyID',15); % set Profile V
end
profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfile?2);
if get (handles.radiobuttonProfileU, 'value') ==
set (profile actxControl, 'MyID',16); % set profile U
else
set (profile_actxControl, 'MyID',17); % set Profile V
end
profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfile3);
if get (handles.radiobuttonProfileU, 'value') ==
set (profile_actxControl, 'MyID',18); % set profile U
else
set (profile actxControl, 'MyID',19); % set Profile V
end
profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfiled);
if get (handles.radiobuttonProfileU, 'value') ==
set (profile actxControl, 'MyID',20); % set profile U
else
set (profile_actxControl, 'MyID',21); % set Profile V
end




T ¥ support@dataray.com
A A A 0 1675 Market Street
Redding, CA 96001
I 4

¢’ +1530 3952500

USING DATARAY’S GETDATA CONTROL

7) Next, we will use the GetData Control to open the M? Dialog and programmatically extract data. First, we need to
create a way to access the GetData Control’'s methods from the MATLAB file that contains all the GUI methods.
Since the GetData Control object belongs to the DataRay class, we will create a function in the DataRay class that
returns access to the GetData Control object:

% get the activeX control of a specified panel or panel number to get access to further functions
of this control
function actxCtrl = getGetDataCtrl (dObj)
% get activeX control to get access to get data ctrl functions
actxCtrl = dObj.getDataCtrl;
end

This function is used in the callback functions that belong to the Open/Close M2 Dialog Button and
GetOCXResult(MA2_u) buttons.

8) Create a Push Button using MATLAB's GUIDE. In the example, we assigned this button the tag m2Button and the
string Open/Close M2 Dialog. We use our function from step 7 to gain access to the GetData Control. We use
the GetData Control to set change the state of its member IsMSquaredOpen, which effectively opens and closes
the M2 Dialog. To use a single button to close and open the M2 Dialog, the button’s callback function should be as
follows:

% —--—- Executes on button press in m2Button.
function m2Button Callback (hObject, eventdata, handles)

% hObject handle to m2Button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

getData actxControl = handles.DATARAY.getGetDataCtrl(); % get activeX control variable to
directly access its Parameters (or Functions)
if (getData_actxControl.IsMSquaredOpen == 0)
getData actxControl.IsMSquaredOpen = 1; %opens the M2 dialog
else
getData actxControl.IsMSquaredOpen = 0; %closes the M2 dialog
end

9) Similarly, we will create another Push Button using MATLAB's GUIDE and use the GetData Control in its
callback function to get the result of the M2 calculation at the instant the button is clicked. In the example we
used getOCXResultButton as the tag and GetOCXResult(MA2_u) for the string of the button. Use MATLAB's
GUIDE to create a Static Text element to display the result. We used textOCXResult as the tag for the Static
Text element. The GetData Control's GetOcxResult() function accepts any ButtonlD# as its parameter and
returns the value that would be calculated and displayed on the corresponding Button Control. This callback
function is used to display the result of the M? calculation in the Static Text:

% —--- Executes on button press in getOCXResultButton.
function getOCXResultButton Callback (hObject, eventdata, handles)

hObject handle to getOCXResultButton (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
getData actxControl = handles.DATARAY.getGetDataCtrl(); % get activeX control variable to

directly access its Parameters (or Functions)
result = getData actxControl.GetOcxResult (156); %156 is the index/ID that applies to m"2 u
set (handles.textOCXResult, 'String', result);

\\\\\ \
e —
e




T ¥ support@dataray.com
A A A 9 1675 Market Street
Redding, CA 96001
e o

¢’ +1530 3952500

EXPORTING PROFILE DATA TO CSV

10) Next, we will use GUIDE to create a group of four Radio Buttons. These elements will allow the user to choose
any of the four profiles that are currently displayed and export the profile’s data. In the example program, we used
the radio button tags radio1, radio2, radio3, and radio4.

11) In addition, we will use the GUIDE to create an Edit Control with the tag editCSVPath and string
C:\Users\Public\Documents\output.csv. This string of this edit control contains the path where the file will be
generated and saved when we write to CSV.

12) Finally, we create a Push Button with tag writeToCSVButton and string Write to CSV. This button's callback
function will write the selected profile (identified by the state of the four radio buttons and the u-profile / v-profile
radio buttons) to a CSV. Here is the callback function:

% --- Executes on button press in writeToCSVButton.

function writeToCSVButton Callback (hObject, eventdata, handles)

% hObject handle to writeToCSVButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
path = get (handles.editCSVPath, 'String'");

if get (handles.radiol, 'value') == %1 means it is selected

)

profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfile); % get activeX
control variable to directly access its Parameters (or Functions)
end
if get (handles.radio2, 'value') == %1 means it is selected

profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfile2); % get
activeX control variable to directly access its Parameters (or Functions)
end
if get (handles.radio3, 'value') == 1 %1 means it is selected

profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfile3); % get
activeX control variable to directly access its Parameters (or Functions)
end
if get (handles.radio4, 'value') == %1 means it is selected

profile actxControl = handles.DATARAY.getProfileCtrl (handles.uipanelProfiled); % get
activeX control variable to directly access its Parameters (or Functions)
end
data = profile actxControl.GetProfileDataAsVariant();
csvwrite (path,data);

The Profile Control’'s GetProfileDataAsVariant returns the current profile data as a variant array.
This completes the BeamMap?2 tutorial! Problems/Questions? Please contact us with the information listed above.




